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Abstract

The objective of this article is to conduct a systematic literature review that provides an overview of the
current state of research concerning methods and application for spatiotemporal analyses of the social
network Twitter. Reviewed papers and their application domains have shown that the study of geographi-
cal processes by using spatiotemporal information from location-based social networks represent a prom-
ising and still underexplored field for GIScience researchers.

1 Introduction

Interactive social media platforms offer a tremendous amount of voluntarily, user-generated
content. In particular, the potential of Twitter has been increasingly recognized by numerous
research domains over the last years. Georeferenced Twitter data creates a promising opportu-
nity for the research area of GIScience to understand geographic processes and spatial relation-
ships inside social networks. However, the growing body of research works conducting Twitter
data analysis is not clearly visible and not easy to locate. In particular, applications and
applied methods for spatiotemporal analysis of Twitter data are not identifiable at first glance.
Specific literature reviews, gathering knowledge and summarizing the scientific production for
Twitter based research questions are currently lacking.

Therefore, the overall goal of this article is to close this research gap by providing an
objective summary of the current state of the research concerning where Twitter in general has
been used, for which specific use cases and what methods have been applied. The reviewed
articles allow a more detailed evaluation regarding the potential of Twitter, but also summarize
remaining challenges and investigate possible drawbacks. A key element of this review is to
identify where solid research results already exist and where new research is needed. Cross-
analyzing our reviewed papers concerning research disciplines, applications and methods, we
identify current research foci and provide a solid foundation for further studies. Finally, rec-
ommendations for future research directions are given.

1.1 Background of VGI, Social Media and Location-Based Social Network

Emerging technologies have created new approaches towards the distribution and acquisition
of crowdsourced information. The growing availability of mobile devices equipped with GPS
sensors, high performing computers and broadband internet connections with advanced server
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and client-side key technologies, allows users to participate actively and create content through
mobile applications and location-based services. The role of the user has changed from being
either a producer or a consumer into being a rather dynamic prosumer (Tapscott 1996). The
participation of individuals and their vast amount of generated data has been commonly
known under the term Web 2.0 (O’Reilly 2009). Facilitated by new technologies, audiences
are using their local knowledge without the need of prior expertise. Goodchild names this phe-
nomenon ‘Citizens as Sensors’, where Volunteered Geographic Information (VGI) is created,
assembled, and disseminated by individuals or groups with knowledge or capabilities using the
Web 2.0 (Goodchild 2007). Within this interactive networked, participatory model of People
as Sensors (Resch 2013), information is supplied free of charge and voluntarily. Haklay terms
this development of new innovative social web mapping applications as the evolution of the
GeoWeb (Haklay et al. 2008).

Social Networks are a key part of this development, incorporating new information plus
communication tools and attracting millions of users. Boyd and Ellison (2007) outline the
term Social Network Sites (SNS), typified by individuals who construct an online profile com-
municating with other users, sharing common ideas, activities, events and interests. Location-
Based Social Networks further enhance existing social networks, adding a spatial dimension
with location-embedded services. For example, users upload geotagged photos via Flickr,
checking in at a venue with Foursquare or commenting on a local event via Twitter.
Geoinformation extracted from these Location-Based Social Networks is usually included
under the umbrella of Volunteered Geographic Information (Sui and Goodchild 2011).
However, Harvey (2013) argues that this would be more precisely labeled as “contributed”
data, since people do not consciously volunteer their data, but generate it in the process of
using the platforms for their particular purposes.

In the case of Twitter, users can post short-status messages with up to 140 characters and
may include photo attachments, which are called “tweets”. These posts can contain specific
syntax such as hashtags (#) as a keyword or term assigned to a topic the users are discussing
or commenting about. Furthermore, a user can subscribe to “follow” or become a “follower”
of other users’ tweets with the possibility of replying directly (@) to all Twitter posts. Accord-
ing to Twitter, about 271 million monthly active users are generating an average of 500 million
tweets per day (https://about.twitter.com/company). With the permission of the user, each
tweet contains a corresponding geo-location acquired from the GPS sensor within the mobile
device. These location-driven social structures allow mobile device owner with ubiquitous
internet access to exchange details of their personal location as a key point of interaction
(Zheng 2011). Location-Based Social Networks are bridging the gap between our physical
world and online social network services containing three layers of information according to
Symeonidis et al. (2014): (1) a social network (user layer); (2) a geographical network (loca-
tion layer); and (3) a semantic metadata network (content layer).

Therefore, user posts in Twitter represent a spatiotemporal signal (geolocation and times-
tamp of tweet) with a semantic information layer (content of tweet message). After the user
registration, all tweets can be collected in real-time through the official Twitter streaming
API (https://dev.twitter.com/docs/api/streaming). The API query allows the filtering of key-
words and individual user posts to preselect tweets as well as the possibility of obtaining
only georeferenced Twitter messages within a predefined bounding box. Analyzing this
spatiotemporal information layer, which is a by-product of individual people’s social interac-
tion, may lead to new insights of understanding spatial structures and underlying patterns.
This interdisciplinary and relatively new research field of Location-Based Social Networks
shows a lack of commonly used online databases and available literature sources. Systematic
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reviews therefore might assist structuring and providing a comprehensive summary of cur-
rently existing literature. This review seeks to gain new knowledge and insights into the
current state of research of Twitter analyses, regarding involved academic disciplines, primarily
reviewed applications and used methods. One benefit of this review will be the ability to detect
current research foci allowing the transfer of established methods from various disciplines into
other disciplines and enhancing new applications. Finally, the review will provide all stake-
holders with further knowledge enabling an interdisciplinary research exchange.

1.2 Existing Literature Reviews

A non-systematic keyword search looking for the term “systematic literature reviews” in
common electronic GIS journal libraries was conducted initially, in the following journals:
International Journal of Geographic Information Science, International Journal of Remote
Sensing, Photogrammetric Engineering and Remote Sensing, Computers and Geosciences,
Transactions in GIS, Geolnformatica, Geomatica — i.e. only journal papers which were ranked
as a number one GlScience journal according to the Delphi Study by Caron et al. (2008) were
selected. Surprisingly, besides literature surveys and basic non-systematic reviews from other
disciplines dealing with geographic information systems, no journal articles conducting a sys-
tematic literature review with relevance to GIScience have been found. This preliminary
outcome underlines the need for further research conducting a systematic literature review in
GIScience.

Related to geographic information science, Horita et al. (2013) assessed the current state
of research for a conference paper analyzing VGI for disaster management and applying a sys-
tematic literature review including a screening process of important literature databases. Roick
and Heuser (2013) provided a general but non-systematic review article about the current
research on Location-Based Social Networks, stating the need of further studies on investigat-
ing how social networks can be applied to specific use cases. Blaschke and Eisank (2012) con-
ducted a non-systematic keyword-based literature search comparing the terms “GIS” and
“GlScience” and their total number of citations over time. However, existing literature reviews
in the GlScience field have been performed in a rather non-systematic manner, with a lack of
statistical techniques including metadata analysis. To the best of our knowledge, no systematic
literature reviews have been published up to this moment in well-known journals in the field of
GIScience.

2 Review Method

This review will follow the guidelines developed by Kitchenham and Charters (2007) and
Kitchenham et al. (2009), dividing the research into three main phases: (1) planning the
review; (2) conducting the review with the selection of studies from electronic databases; and
(3) reporting the final review results itself.

The flowchart review model in Figure 1 visualizes our automatic workflow approach.
The following paragraphs and sections are divided according to the review process shown in
the flowchart of Figure 1. Due to limited space, the detailed procedure and methods of the lit-
erature review, including all intermediary and derived results have been documented in a
review protocol and are published as a separate technical report (http://koenigstuhl.geog
.uni-heidelberg.de/publications/2014/Steiger/Twitter_review_technicalreport.pdf). The detailed
review method steps have been black-boxed in Figure 1 and are part of the external technical
report.
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Figure 1 Flowchart review process and number of included and excluded papers in each step
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Drafting a clear and concise research question is an essential task needed to successfully
identify primary studies providing a detailed state-of-the-art report (Okoli and Schabram
2010). As the review objectives are to extract use cases, focused research areas and methods
when utilizing Twitter, the following three research questions have been selected:

RQ 1: Which of the academic disciplines are mainly focused on researching Twitter?
RQ 2: What are the application domains where Twitter has been used?
RQ 3: What are the methods used to analyze data from Twitter?

Application domains are defined as the primarily identifiable research field of Twitter applica-
tions for each paper.
The initial step consists of selecting eligible literature sources based on following criteria:

e Consideration of journal, workshop and conference proceedings published between 2005
and September 2013 in English;

e Selection of multiple digital libraries with relevance to information research identified by
Brereton et al. (2007) and further supplemented with GIScience relevant digital libraries.

The electronic database search with defined keywords was conducted and included all papers
published up until 30 September 2013. Furthermore, test reviews with preliminary trial
searches were carried out in order to detect and minimize bias concerning the defined search
strings or during the subsequent data extraction process.

Table 1 depicts our initial 288 and 92 final reviewed papers concerning the publication
source. Duplicate search results found in multiple electronic databases have been excluded.
Papers appearing in several electronic databases (e.g. in the Google Scholar search engine for
publications and in the Web of Knowledge) will only be included once, storing unique search
results. The backward reference search in Table 1 is a result of the further qualitative review
(see Technical Report).

Table 1 Used electronic databases with included and excluded papers during the review process

Unique Result Backward

Search  Paper Reference Final
Source URL Result  Screening Search Review
IEEE Library http://www.ieeexplore.ieee.org 36 5 9 14
ACM Digital Library  http://dl.acm.org 149 20 21 41
AlS Electronic Library http://aisel.aisnet.org 4 1 0 1
Google Scholar http://scholar.google.de 12 8 8 16
Science Direct http://www.sciencedirect.com 12 0 0 0
Elsevier http://www.scopus.com 23 3 1 4
Springer Link http://www.springerlink.com 9 0 3 3
Taylor and Francis http://www.tandfonline.com/ 15 0 0 0
Wiley Online Library http://onlinelibrary.wiley.com 2 1 1 2
Web of Knowledge http://www.webofknowledge.com 18 2 0 2
AAAI https://www.aaai.org/ 2 2 7 9*
Total 282 42 50 92

*Papers from the Association for the Advancement of Artificial Intelligence (AAAI) have been extracted from the
text analysis but not detected within the metadata analysis. The qualitative review has shown a relevance of these
articles to our research questions and therefore all papers have been included
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Table 2 Defined inclusion and exclusion criteria during the qualitative review

IC;: Papers clearly depicting their research applications of Twitter data (RQ 1)

IC,: Papers clearly describing their used methods concerning the exploration, extraction,
processing, validation and aggregation of Twitter data (RQ 3)

ICs: Papers being listed in previous selected electronic databases (Table 1)

EC;: Papers not explaining methods nor their applications of Twitter data usage (RQ1 and
RQ3)

EC,: Duplicate content, i.e. papers covering the same research about Twitter from the
authors (e.g. a journal paper containing only minor extensions to a conference paper)

EC;: Papers not being listed in previous selected electronic databases (Table 1)

The remaining studies (n = 92) have been qualitatively reviewed. A tabulated spreadsheet
has been developed to assist the review process. All results are documented in a detailed review
table, collating information from all 92 papers aiming to answer our initial research questions.
Reviewed papers and their specific applications (RQ 2) (as shown in Figures 5 and 6), have
been categorized by analyzing the primarily stated research application from the paper. The
applied methods (RQ3) have been classified using the defined topic types according to
Kitchenham and Charters (2007).

A practical screen of included papers by reading the full-text, furthers the review by exam-
ining methods and use cases. The inclusion (IC) and exclusion criteria (EC) for the qualitative
review are listed in Table 2.

During the paper screening process, 42 papers were included which show relevance to our
previous formulated research questions (IC;, IC; and IC;). Fifteen papers not explaining their
methodological approach or application of Twitter fall within the exclusion criteria (EC;).
Another five papers have been excluded because of duplicated content (EC,). These cross cita-
tions have not been excluded quantitatively in the metadata- and text-analysis previously as
they are strongly semantically close. Forty-two papers remain for the further analysis.

3 Review Results

Analyzing the year of publication for all included papers in the final review, a constantly
increasing amount of Twitter research articles have been published during the reviewed time
period (01/01/2005-30/09/2013). Between 2009 and 2012 the quantity of published papers
has more than tripled from 27 to 84 (Figure 2). As the review includes all works published
until September 2013, a similar trend concerning the number of papers for the whole year
2013 can be postulated. The majority of finally included and reviewed papers have been pub-
lished between 2011 and 2012 (53 papers for both years).
In the following sections, our research questions will be answered.

3.1 RQ 1: Which of the Academic Disciplines are Mainly Focused on
Researching Twitter?

All papers’ metadata has been analyzed to find out from which academic disciplines authors
are contributing research results on Twitter in general (Figure 3). Papers have been classified
according to academic disciplines based on available metadata within the paper, where authors
state with which department or research field they are affiliated. If not provided inside the
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Classification of papers according to authors’ academic research disciplines

papers, the authors’ affiliated faculty or department was investigated through an online search.
Forty-six percent of our reviewed papers have been published by researchers working in the
Computer Science field, along with 30% from the field of Information Science. Other research
disciplines such as Earth- and Geoscience (7%), Social Science, Engineering and Computer
Linguistics have only a minor occurrence (less than 4% each). In 9% of the papers authors
have a multi-disciplinary background. In Figure 4 the temporal evolution of reviewed studies
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Figure 4 Yearly breakdown of publication count in different academic disciplines

(Figure 2) according to their academic discipline (Figure 3) have been combined and analyzed.
Due to the sparseness and small number of studies for some disciplines only the most fre-
quently occurring ones (above 4%) have been visualized. The majority of the reviewed studies
were published between 2010 and 2013 mainly from an information and computer science
background. From earth/geoscience and social science disciplines only a few studies have been
published since 2011.

3.2 RQ 2: What are the Application Domains where Twitter has been Used?

When focusing on primary applications of every paper (Figure 5), more than 46% of the
papers have been classified as research on event detection, 14% of the papers deal with social
network analysis and investigate individual user characteristics and their social relationships
within a network. Thirteen percent focus on retrieving direct or indirect geolocation informa-
tion from Twitter defined as location inference, while 27% of the papers do not have a specific
context of application (Figure 5). Within the subfield of event detection and the investigation
of abnormal spatial, temporal and semantic tweet frequencies, disaster- and emergency man-
agement has been the primarily identified application in 27% of all reviewed studies. Twitter
research for traffic management has been the application in 14% of reviewed studies, while
5% are investigating Twitter for disease/health management. Within 49 papers we were able to
extract the geographic location where Twitter data has been collected on a country level and in
a few cases on a city level. Almost 24 papers obtain and analyze Twitter datasets inside the
USA (Figure 6). Six papers collect Twitter data on a city-scale for New York. The seven papers
covering Twitter data for Japan and the two papers retrieving social media data for Haiti, use
Twitter in the context of disaster management.

3.3 RQ 3: What are the Methods Used to Analyze Data from Twitter?

Before investigating the research methodologies within all reviewed papers, we first examine
exactly which information from Twitter data has been used. The applied methods are strongly
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dependent on the information content of the Twitter input data (Figure 7). Thirty-three
percent of the papers use all information layers, including the tweet message, the geotag
(geospatial information), and the timestamp. The main focus of these papers is a spatio-
temporal and semantic analysis. Ten percent of papers focus on researching spatio-temporal
information in Twitter not including semantic analysis. Therefore, 43% are working with
spatial data from tweets. Fifty-seven percent of articles only consider the semantic information
of the tweet itself without spatial information. These papers analyze the content of tweets and
construct a semantic network to enrich non-spatial posts with geographic information to infer
locations. Within these papers, four papers analyze solely the Twitter posts to infer geographic
locations and identify geographic landmarks from textual information. One paper (Watanabe
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etal. 2011) furthermore analyzes semantic tweet frequencies to assign and locate non-
geotagged tweets to events with a geographical reference.

Ten papers also analyze follower and following activities of the Twitter user, five conduct
a hashtag analysis and two a URL analysis. Descriptive metadata from Twitter including user
profiles and personal user activities are a main research domain to conduct a metadata analy-
sis. This user centered approach, applied within six of the reviewed papers, includes the analy-
sis of Twitter profiles metadata and tweet posts as well as social relationships (follower/
following), to predict individual user locations and to cluster similar users.

When focusing on the temporal evolution of used information from Twitter (Figure 8), the
majority of reviewed papers between 2006 and 2011 conduct research on Twitter by using
non-spatial (semantic) information. Simultaneously, only one reviewed paper in 2009 focuses
on researching Twitter data using spatial information. Thus, from 2010 onwards the amount
of reviewed papers utilizing spatial information has increased, and it passes non-spatial Twitter
analyses in 2012. The number of reviewed papers researching spatiotemporal and semantic
information is growing with the number of papers focusing on spatial aspects of Twitter data.

As shown in Figure 9, 40% of the articles have a technological background with a focus
on investigating and developing methods of exploring, extracting, validating and aggregating
Twitter data, while 20% of the reviewed studies go one step further, providing a conceptual
model by implementing a system architecture to collect and process data from the Twitter
streaming API. The remaining 40% of the papers focus on the application side of Twitter.
Taking a closer look at the applied methods, 55 papers out of 92 investigate methods of event
detection in Twitter (Figure 10). Methods analyzing the social network of Twitter together
with approaches to infer location are also frequent methodological applications (applied in 13
papers). Four papers work on topic detection and no specific method was identified for 11
papers.

The specific methods used in all the reviewed papers are now summarized. The main
purpose of all applied methods is to acquire knowledge from Twitter data by considering
the characteristics of the dataset. Information retrieved from Twitter data is spatiotemporally
and semantically uncertain. Focusing on the sematic content of Twitter data, the textual com-
ponent of Tweets is a cohesive string of words. These word vectors are relatively vague and

© 2015 John Wiley & Sons Ltd Transactions in GIS, 2015, ee(ee)



Spatiotemporal Analyses of Twitter Data — Systematic Literature Review 11

non spatial (semantic)
M spatial
[ spatio-temporal + semantic
10
T
>
(&}
O
5‘
oL | ﬂ

2006 2008 2009 2010 2011 2012 2013
Year

Figure 8 Yearly breakdown of paper count according to the information used from Twitter

B Syslem Archileclure
W Application

B Method

n=92

40%

Figure 9 Classification of papers according to applied methods (n = 92)

semantically uncertain. Therefore methods have been applied by either manually filtering
terms and keywords or by integrating a Natural Language Processing step (Kosala and Adi
2012; Quercia etal. 2012; Corvey etal. 2010; Wanichayapong etal. 2011). Text mining
methods such as term frequency (Hecht et al. 2011), term frequency-inverse document fre-
quency (Wang et al. 2012; Jackoway et al. 2011; Weng and Lee 2011) and term-ranking algo-
rithms (Gupta and Kumaraguru 2012) have been used to create semantic weighting factors for
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tweets. Further semi-automatic ontologies (Sofean and Smith 2012) have been generated from
the tweet corpus to extract and identify semantic relationships (Watanabe et al. 2011). Other
approaches used in the reviewed papers include semantic classification algorithms like Named-
Entity Recognition (Abel et al. 2012; Finin et al. 2010; Michelson and Macskassy 2010;
Gelernter and Balaji 2013), supervised machine learning like Naive Bayes (Zielinski and Biigel
2012; Wang et al. 2007), or maximum entropy classifier (Go et al. 2009) for pattern recogni-
tion. Latent Dirichlet Allocation as a probabilistic topic modeling has been used in several
papers (Chae et al. 2012; Kling et al. 2012; Zhao et al. 2011; Pennacchiotti and Popescu 2010;
Ferrari et al. 2011; Weng and Lee 2011), retrieving textual information for a set of topics from
tweets. Several models consider the spatial component of semantic distributions proposing
Spatial Latent Dirichlet Allocation (Pan and Mitra 2011) and Location aware topic modeling
(Wang et al. 2007). Since the location information from Twitter might be inaccurate because
of spatiotemporal uncertainties or incorrect due to mobile device characteristics, methods have
been applied to infer spatially reliable information. For spatial attributes from Twitter
(georeferenced tweets) regression models have been developed to correlate abnormal tweet fre-
quencies with real world events (Takhteyev et al. 2012; Veloso and Ferraz 2011). Gazetteer-
based approaches have been used to infer indirect locations from Twitter attributes (Zielinski
and Middleton 2013; Ribeiro et al. 2012). Georeferenced tweets have been Kalman filtered
(Sakaki et al. 2010) and clustered applying Density-Based Spatial Clustering (Boettcher and
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Lee 2012). Based on geotag and semantic content, tweets have also been classified using
Support Vector Machines (Ritterman et al. 2009; Zubiaga et al. 2011; Starbird and Muzny
2012; Sakaki et al. 2010).

3.4 Cross Analysis

In the following paragraph a cross analysis has been performed, investigating where methods
have been extracted and sorted according to their category of application. However, not all 92
qualitatively reviewed papers can be quoted herein. Table 3 includes a detailed description of
the outcomes of each reviewed study dealing with the spatial aspect of Twitter data.

3.4.1 Event detection

Within the subdomain of an event detection, researchers are investigating on detecting abnor-
mal spatial, temporal and semantic tweet frequencies and patterns in real-time using Twitter as
a social sensor for real world events (Chae et al. 2012; Yardi and Boyd 2010). Semantic infor-
mation has been the predominant information layer used for event detection. Cui et al. (2012)
work on semantic topic detection for events by analyzing popular hashtags. Several studies
focus on the semantic tweet content using Natural language processing (Corvey et al. 2010).
Becker and Gravano (2011) and Jackoway et al. (2011) identify real-world event and news
content on Twitter by extracting and classifying topics using tf-idf and Naive Bayes Classifier.
Weng and Lee (2011) cluster wavelet-based signals in Twitter and classify events by applying
tf-idf as well as the LDA topic modeling algorithm (Blei et al. 2003). Kling et al. (2012)
research urban topic modeling with LDA and spatio-temporally clustered Twitter data in New
York to detect events. Lee and Sumiya (2010) study user behavior patterns in Twitter measur-
ing geographic regularities detecting geo-social events and identifying Regions of Interests
(Rol). Boettcher and Lee (2012) differentiate events based on geographical scales by counting
average daily keyword frequencies over space using DBSCAN clustering algorithm (Ester et al.
1996) and classify terms according to their relevance to a local event. Abel et al. (2012) also
semantically filter keywords and classify information on Twitter applying Named-entity recog-
nition. Hughes and Palen (2009) focus on Twitter metadata performing a user analysis and
classification including tweet response rates for mass convergence events. Starbird and Muzny
(2012) analyze mass disruption events using the Support-Vector Machine (SVM) Learning
algorithm to classify user tweeting “on ground” and “not on-ground” for the Occupy Wall
Street movement in New York.

Disaster/emergency management. In the area of disaster/emergency management
spatiotemporal and semantic information have been mainly used to analyze Tweets. Thomson
et al. (2012) categorizes tweets and measures tweet proximities comparing different sources of
information and assessing reliability of Twitter for the Fukushima nuclear power plant inci-
dent. De Longueville and Smith (2009) conduct a spatio-temporal analysis of Twitter tweets
for a fire event in France. Murthy and Longwell (2013) explore the temporal frequency distri-
bution of tweets per country for disasters. Together with MacEachren et al. (2011), who devel-
ops a system architecture for situation awareness, they are both applying methodologies for
the earthquake in Haiti. Twitter as an earthquake detection and geolocation system was first
introduced bv Sakaki et al. (2010) and was adapted by Crooks et al. (2013). Methods in this
work include a Kalman and partioning filter of tweets together with a SVM classification to
estimate the earthquake location and to derive a hazard trajectory from tweets. Sakaki et al.
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(2010) and Earle et al. (2011) monitor earthquakes in China (Sichuan province), Japan and
Indonesia, in real time with a semantic and temporal tweet frequency analysis. Zielinski and
Biigel (2012) use a multilingual language model with a Naive Bayes Classifier to semantically
detect earthquake events posted on Twitter. Gelernter and Balaji (2013) work with Named-
entity recognition to detect and geocode geographic content from an earthquake in New
Zealand. Stefanidis et al. (2011) analyze ambient geospatial information for a crisis event
detection in Egypt (Cairo) performing spatio-temporal and social network analysis. Gupta and
Kumaraguru (2012) analyze tweets during riots with a news ranking engine validating the
credibility of information by checking the posts and user profile metadata. Flood, storm and
hurricane detection are also common applications where methods have been developed.
Terpstra (2012) conduct a spatio-temporal analysis on Twitter data during a severe storm at a
mass event. Zielinski and Middleton (2013) obtain and classify Twitter datasets during a
tsunami in the Philippines and a flooding event in New York using a gazetteer based automatic
geocoding approach. Chae et al. (2012) describe a term-based filtering and anomaly detection
in Twitter for a hurricane and earthquake event.

Disease/health management. Ritterman et al. (2009) consider Twitter to be a proxy to
predict market prices during a swine flu pandemic analyzing tweet content with a SVM classi-
fication. Sofean and Smith (2012) observe Twitter for disease reports from users building an
ontology of medical terms combined with a SVM classification. Veloso and Ferraz (2011) also
extract keywords from tweets to measure semantic similarities and spatio-temporally locate
incidents of dengue fever in Brazil. Lampos and Cristianini (2010) follow a similar approach
in the UK, using a correlation regression model to match up Twitter posts with real world
disease reports.

Traffic management. Wanichayapong etal. (2011) mine Twitter data to derive spatio-
temporal traffic-related information using a NLP and keyword filtering method to match
traffic information from Twitter on road networks in Thailand. Sakaki and Matsuo (2012)
have a similar approach in Japan with an additional classification of driving information from
Twitter. Ribeiro et al. (2012) detect and locate traffic events with Twitter by georeferencing
traffic-related tweets with a gazetteer. Kosala and Adi (2012) also collect traffic related Twitter
data using a NLP. Furthermore traffic data is fusioned with social sensor data from Twitter to
check the plausibility of events. Studies in the area of general mobility aim to derive character-
istic motion pattern from a single user and a crowd from Twitter. Wakamiya and Lee (2012)
extract mobility patterns over Japan by spatial partitioning tweets (e.g. using administrative
areas, a grid and voronoi clusters). Ferrari et al. (2011) and Fuchs et al. (2013) detect urban
patterns in the US by spatio-temporally analyzing tweet and user activities including semantic
topic modeling. Yuan et al. (2013) complement the approach analyzing location and user
activity and predicting mobility pattern. Terms appearing in Twitter are clustered, classified
and analyzed concerning their spatial distribution by Andrienko and Andrienko (2013) in
order to detect spatial behaviors. Sadilek et al. (2013) extract spatio-temporal motion of user
trajectories in Twitter.

3.4.2 Location inference

Location inference describes the process of retrieving direct or indirect geolocation informa-
tion from Twitter either using provided metadata (user profile) or the semantic tweet content.
Ribeiro et al. (2012) focus on enriching geolocation and georeferenced tweets by inferring
location from user profiles and their social network (friends). Finin et al. (2010) construct a
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Named-entity recognition from Twitter to build up a crowdsourced natural language process-
ing. A language-based model to predict user locations is introduced by Kinsella et al. (2011).
Hecht et al. (2011) evaluate semantic georeferencing methods from user profiles in Twitter
comparing term frequencies (tf) and Naive Bayesian Classifier. Chu et al. (2010) and Hong
et al. (2012) develop a location-aware topic modeling integrating a Naive Bayes classifier to
correlate relationships between location and words. Kulshrestha and Gummadi (2012) infer
user geolocation by correlating user origin and Twitter population. Li et al. (2011) propose an
estimation ranking method to predict POI tags on tweets. Lee and Hwang (2012) spatially cor-
relate indirectly inferred geolocation through tweet content and user profile with GPS coordi-
nates from the geotag. Gonzalez and Chen (2012) as well as Hiruta et al. (2012) further adapt
the approach realizing a location inference system using profile location and semantic classified
tweets. Watanabe et al. (2011) focus on a tweet content analysis by creating term association
rules to automatically geotag non-georeferenced Twitter data for local events. Dalvi et al.
(2012) geolocate users by matching posted tweets containing indirect spatial information to
real world spatial objects.

3.4.3 Social network analysis

Social network analysis intends to investigate characteristics of individual users within a
network and their social relationships towards each other. The majority of reviewed papers
analyzed textual information from tweet posts and additional metadata (e.g. user profile, fol-
lower, following, retweet). According to Hong et al. (2011) conducting a large scale linguistic
Twitter analysis, 51% of all posted Twitter tweets are in English. Pennacchiotti and Popescu
(2010) classify linguistic features with LDA topic modeling to detect political affiliation, eth-
nicity identification and affinity for a particular business for each Twitter user. Wu et al. (2011)
categorize users and their affinity for different news topics having different characteristic
lifespans of content. Takhteyev et al. (2012) geo-reference users and detect individual spoken
languages to assess social ties in Twitter with a correlation and regression analysis and airline
flight data as a ground truth. Cha et al. (2010) measure individual user influences on topics by
analyzing user tweet and retweet behavior. Weng et al. (2010) also study on estimating influ-
ence of distinct user calculating and ranking topic similarities with LDA and the relationship
structure (friend, follower etc.) for each user. Krishnamurthy and Arlitt (2006) and Yardi and
Boyd (2010) identify classes of Twitter users and their behaviors looking into typical social
network conversations by analyzing retweets. Cranshaw et al. (2012) examine Foursquare
data posted through Twitter by employing a spectral clustering algorithm to discover charac-
teristic neighborhoods showing a spatial and social proximity.

A subfield of social network analysis and computational linguistics are sentiment and
emotion analysis for Twitter applying methods of NLP. Go et al. (2009) conduct a Twitter sen-
timent analysis using SVM classification, Naive Bayes and Maximum Entropy machine learn-
ing technologies. Wang et al. (2012) have a system for real-time Twitter Sentiment Analysis
during the US election integrating NLP and tf-idf. Quercia et al. (2012) classify sentiments and
topics also by extracting emotion words with NLP and weighs the effect on social ties among
user.

4 Discussion

During the paper-screening process, an increasing number of publications concerning research
on Twitter between 2005 and 2013 can be postulated. This effect over time is not surprising
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given the fact Twitter received increased attention by users, which is also mirrored in the
growing attention Twitter received by researchers. However, when focusing on the amount of
published papers over time from different electronic databases selected during the review, we
can discern a broadening of the range of Twitter-relevant articles. From 2005 to 2010 most
selected studies have been published within ACM. From 2010 onwards more reviewed studies
have been produced by a greater variety of publishers (IEEE, Elsevier, Springer). Therefore,
research has intensified and spread over further research domains, since the targeted audience
of every electronic database is different.

Most of the reviewed studies dealing with spatiotemporal Twitter analysis (43%) pro-
cessed textual information from tweets by applying keyword-based filtering techniques. Limi-
tations of Twitter analysis mentioned in the reviewed studies are mainly related to the
uncertainty and sparseness of the dataset, making a validation and comparison with reference
data difficult. Other peculiarities have been faced due to the limitations of the Twitter API
query (e.g. size of bounding box, where to retrieve data) and maximum character limits of
tweet posts.

Concluding the results from RQ1, most of the literature concerning Location-Based Social
Networks and Twitter originates from the field of computer and information sciences (76 %),
which have been the main academic disciplines to publish papers about Twitter between 2005
and 2011. More input from other disciplines would broaden the existing studies and might
lead to new research directions. Research groups already working in the field of Location-
Based Social Networks would directly benefit from new interdisciplinary methods and could
further advance their own research. From 2011 onwards, other disciplines like earth/
geosciences and social sciences also conducted and published research papers regarding the
spatiotemporal analysis of Twitter. One explanation can be seen in the increasing
penetration rate and use of social networks by people who are exchanging more and more
locational information supported by a growing availability of mobile devices equipped
with GPS. Within the field of geosciences, for example, this development enables the possibility
of utilizing ‘Citizens as Sensors’ (Goodchild 2007) for a (near) real-time detection and
geolocation of natural hazards. In this manner, reviewed studies and their application domains
have shown that the study of geographical processes by using spatiotemporal information
from location-based social networks represents a promising yet underexplored field for
GlIScience researchers.

Summarizing the results of reviewed studies (Table 3), georeferenced tweets provided
accurate location information for all application domains. However disaster management has
been the primarily identified application (RQ2) of Twitter data usage. Within this application
domain, study outcomes have demonstrated a high spatiotemporal reliability and usefulness
of tweets. Earthquake detection from Twitter is one successful example in a number of
reviewed studies where disaster events have been localized in a real-time manner, showing a
high correlation in comparison with official earthquake sensor data. A similar outcome can be
stated within the application of disease and health management. Tweets indicating disease
incidents have shown a similar spatiotemporal distribution in comparison with official
reports. These studies provide a first ground truth on how representative and trustworthy
tweets for different application domains are. The additional value of this emerging, inexpen-
sive and potentially widespread data in comparison to traditionally acquired data is their high
spatiotemporal resolution. This opens up the possibility of designing early-warning systems
that detect spatial patterns and events in a (near) real-time manner, and thus may add to or
validate existing information sources. These study methods could also be applied in the area
of event detection for traffic and human mobility related applications where research has only
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been conducted in a few cases. Considering the previous studies, more research on
spatiotemporal analysis of events in the area of traffic management might show a similar
outcome.

Research on social network analysis conducted in 14% of all reviewed studies has been
able to investigate the characteristics of individual users within a network and study their
social relationships. The investigation of social ties which also considers spatial distributions
could potentially be a benefit for GIScience researchers to spatiotemporally analyze collective
social activities in order to understand geographical processes. Indeed, none of the reviewed
studies related to GIScience have been found analyzing location-based social networks for
applications related to urban planning and management

Reviewed studies dealing with location inference from social networks were able to
extract and predict locations of users and places (e.g. points of interest) from Twitter using all
available information. These results could be used to increase the precision and accuracy of
locations within applications for event detection, by additionally analyzing textual information
from tweets as well as metadata (e.g. user profiles).

Looking through all applications, Twitter data has been obtained mainly for the US.
Twitter data for Brazil, for instance, has only been analyzed for two use cases, although the
Twitter penetration rate for Brazil is one of the highest (Graham and Stephens 2012). The
available research consequently does not match up with the quantitative geographical distribu-
tion of Twitter usage and indicates the need of future studies to span a wider geographic cov-
erage. This can be a potential bias factor since research results might have a different outcome
in other study regions. When focusing on the ratio between the active Twitter user and the
general population, there is a mismatch between population and sampling frame. The effect
known as sampling bias might lead to exclusion or under/over representation of certain popu-
lation groups.

Disaster management has been one of the main identified application domains researched
predominantly by scientists from the information science field followed by the earth and
geosciences (RQ1 and RQ2). Many studies originating from the earth/geoscience disciplines
are mainly dealing with emergency and disaster management.

Since there is a strong concentration of studies in the area of event detection, specific
application domains like disaster management could benefit from this methodological knowl-
edge during the impact analysis of disasters in order to strengthen situation awareness and
improve emergency response, especially in areas with a lower availability of high-resolution
official data sources such as in situ sensors.

The majority of reviewed studies (71%) from computer science faculties have no specific
application context and are, unsurprisingly, principally focused on developing system archi-
tectures and investigating scientific methods to improve technological implementations (RQ1
and RQ3). In contrast, publications from the field of information science are leading the
research on event detection by primarily applying methods to extract textual information
from tweets.

Focusing on methods (RQ3), one identified research gap from a GIScience perspective is
the lack of common methods (e.g. applying spatial data mining techniques), in order to adapt
to new data types. Georeferenced social media feeds are one example of these new uncertain
and sparse data sources. Density-based spatial clustering techniques have been the main
applied spatial methods of reviewed studies. Point-based observations are clustered based on
distance measures. However, this highly complex and spatiotemporal uncertain information
from location-based social networks causes difficulties in finding appropriate parameter values
of distance measure thresholds. The parameter inference of existing methods is affected by
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influences due to different point densities and geographic scale effects. Current methods might
not sufficiently incorporate these real world geographical characteristics of datasets (Miller
and Goodchild 2015). If one is investigating a spatial phenomenon at a wrongly adjusted
analysis scale, the analyst misses out the essential information (i.e. spatial variation). Thus,
these issues are crucial for the exploration of latent pattern and the ability to sense geographi-
cal processes from Twitter and are classic geographic topics, which offer a great potential for
future GIScience studies.

Furthermore, event detection has been the predominant methodological research area
for more than 46% of papers. In contrast, only 20% of the reviewed papers propose a
system architecture which could be a potential service application, e.g. for supporting
stakeholders during the pre-impact of an extreme event or during an emergency response.
Since in many cases information about the occurrence of the event can be considered as
given (e.g. in some disaster events), it seems that there is currently an overly strong concen-
tration of studies in event detection, without resorting to other information sources (e.g.
authoritative data such as those from remote sensing, in situ sensors, official organizations).
Thus, improved spatiotemporal analysis methods for extracting useful and more detailed
information about events from Twitter data that leverages existing geoinformation sources
(e.g. Herfort etal. 2014) are an important topic to be addressed by future work in this
area.

Most of the reviewed studies (75%) dealing with spatiotemporal Twitter analysis pro-
cessed textual information from tweets by manually applying keyword-based filtering
techniques. More use of computer linguistic approaches with advanced methods to infer
textual information from tweets, combined with methods of spatiotemporal analysis,
might provide further insights since the number of available studies from computer linguistic
disciplines using spatiotemporal information have been small (RQ1 and RQ3). At the
same time, a changing temporal pattern over the last few years from the exclusive use of
semantic information to a focus on spatial aspects of Twitter data has been revealed
(Figure 8), which underlines the possibility of combining methodological knowledge of pro-
cessing semantic and spatiotemporal information. Within the application of social network
analysis, semantic information and user metadata (user profile, follower/following informa-
tion) from social networks have been primarily used to study social relationships (RQ2
and RQ3). These information layers have also been mainly used to conduct sentiment and
emotion analysis. Using the spatial information of geotagged tweets during sentiment and
emotion analysis might lead to new insights such as how people spatially perceive their sur-
roundings (e.g. urban emotions). Reviewed studies in the area of disaster management also
focused on analyzing posted website links (url) through Twitter in order to track
what and how information regarding disaster events disseminates in social networks. This
knowledge could also be beneficial during other events like diseases or mobility-related inci-
dents, providing stakeholders with insights and strategies on how to publish and manage
information.

In summary, GlScience contributions, especially regarding the integration of spatial
methods, have been rare and underrepresented during the literature review. Although 43%
percent of papers work with spatial data, only 7% of all reviewed papers have been written by
those from a geosciences background (RQ1 and RQ3). The location component of Twitter
has been considered in several studies. However, certain academic disciplines and application
domains are over- and under-represented when reviewing the current state of research and
this study has revealed current gaps and areas for future work. These are from a GIScience
perspective:
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1. The lack of common methods for spatial analysis in order to adapt to new uncertain data
types of location-based social networks such as Twitter.

2. The current spatial methods only marginally incorporate geographic scale effects within
the spatial analysis of Twitter data.

3. The lack of combination of different methods within Twitter analysis (e.g. social network
analysis, semantic analysis, spatiotemporal analysis), in order to better utilize all available
semantic and spatiotemporal information layers.

4. The lack of methods that leverage other data sources not only as reference data, but also
for data fusion and improving information extraction in the analysis of Twitter data.

In this manner, conducting a systematic literature review is an efficient way to select the
best available research and facilitates research approaches by identifying current existing
research gaps and study limitations. The outcome of this study provides an overview on the
state of research with new insights into identified spatiotemporal applications and methods
which are potentially applicable to other location-based social networks and VGI platforms
showing similar data characteristics.

Finally, the conducted review has some limitations. Looking through digital libraries (Section
2) which might use different non-transparent search algorithms might generate selection bias,
especially when combining search results. Another possible selection bias occurs when non-
English citations are excluded. Since the state of research regarding the spatiotemporal analyses of
Twitter is reviewed, we might create a sampling bias which could lead to exclusion or under/over
representation of certain research studies. Thus, specific problems of research on LBSN might
only occur within certain sampling frames chosen by the researcher. Depending on the Twitter
information and analysis the researchers are focused on (e.g. only georeferenced tweets), unrepre-
sentative subsets and different sample sizes from the whole amount of tweets might be generated.
Moreover, results from the systematic literature review strongly depend on the input data. There-
fore a limiting factor of this systematic literature review was crawl and search limitations of elec-
tronic databases, and research papers not being fully accessible.

Another key limitation is that primary studies are very heterogeneous concerning methods
and applications, because used terms can be unclear in the varying academic disciplines. The
search term “social media” is one example which was excluded, since search results during the
metadata analysis have shown that no relevant research papers with specific methods and use
cases were extracted. Keywords arbitrarily defined by researchers can be an issue since these
buzzwords (e.g. social media and big data) appear and disappear during temporal and the
technological development (Levy and Ellis 2006). Therefore the underlying methodologies
might be subject to a more static development, but difficult to assess quantitatively with a sys-
tematic literature review. Another limiting aspect is the initially defined search terms during the
keyword-based search, which might be subject to bias, as terminology could be influenced by
academic discipline and background.

To assist the selection process a backward reference search has been performed within
the qualitative review. Implementing an automatic citation search approach during the quanti-
tative review, however, was not possible at this stage, due to the high amount of primarily
included papers and the fact that metadata of research papers currently does not contain
machine-readable information concerning used references.

When investigating academic disciplines mainly researching on Twitter (Section 3.1)
during the review analysis (Section 3), we extracted disciplines according to the department or
affiliated research institute. However, this procedure does not take into consideration authors
working at a certain department but having a different academic background.
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5 Conclusions

This article has presented a systematic literature review on the state of research concerning
methodologies, applications and use cases of Twitter as a Location-Based Social Network. The
proposed systematic literature review method considers and combines search results from
multiple heterogeneous digital libraries and allows an effective reproducible assessment of rel-
evant research studies. Together with the implementation of an iterative keyword-based search
considering metadata analysis results, we were able to minimize bias during the overall review
process. A combined approach of quantitative and qualitative review methods decreases the
percentage of possible papers which have not been detected at all. One of the main advantages
of the advanced systematic literature review, when compared with non-systematic reviews, is
the degree of confidence that the available literature has been exhaustively and systematically
searched. Non-systematic literature reviews are biased by the impact of human subjectivity,
selecting relevant research papers in a non-reproducible, arbitrary manner. Papers identified in
our systematic literature review have been selected from multiple electronic libraries and
provide a much broader multidisciplinary perspective.

Finally, we were able to answer our initial research questions (Sections 3.1-3.3) and
provide new statistics-based insights for Twitter as a Location-Based Social Network. In this
manner, we have shown the need for new research contributions from yet underrepresented
disciplines within this systematic literature review and hope to further encourage and foster
new research especially from the GIScience field. GIScience can contribute essential research
methods in order to advance the research of Location-Based Social Networks by further
integrating methods of spatial analysis. One GlScience research objective should be to
develop novel methods and approaches towards the spatiotemporal analysis and exploration
of social-media data by leveraging existing geographic knowledge. This research could provide
stakeholders with near-real-time information and could lead to new insights by analyzing geo-
graphic and social aspects of Twitter.
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